

Kapitel III - Salze und Salzbildungsarten

<u>Einführung in die Grundlagen,</u> <u>Achtung: enthält auch die entsprechenden Übungen!!!</u>

Themen in [] müssen nicht auswendig gelernt werden!

Navigation

www.lernmaus.de

Inhalt

Trivialnamen von Salzen
Kupfersulfat
Übersicht aller Salzbildungsarten
Umsetzung starke Säure mit Salz einer schwachen Säure
(Verdrängung)

Alkali- und Erdalkalimetalle

Übungen

- 1. Übung
- 2. Übung
- 3. Übung
- 4. Übung
- 5. Übung (entspr. dem Thema "Alkali- und Erdalkalimetalle")

Björn Schulz, Berlin, 25.07.2003

Lernmaus.de

Trivialnamen von Salzen

Trivialname	Fachbezeichnung	Formel	Salz der
Ammonsalpeter	Ammoniumnitrat	NH_4NO_3	Salpetersäure
Bittersalz	Magnesiumsulfat	$MgSO_4$	Schwefelsäure
Chilesalpeter	Nariumnitrat	$NaNO_3$	Salpetersäure
Glaubersalz	(Di-)Natriumsulfat	Na ₂ SO ₄	Schwefelsäure
Gips	Calciumsulfat	CaSO ₄	Schwefelsäure
Hirschhornsalz	-	2 NH ₄ HCO ₃ ·	Kohlensäure
		(NH4)2CO3	
Kalk	Calciumcarbonat	CaCO ₃	Kohlensäure
Kochsalz	Natriumchlorid	NaCl	Salzsäure
Marmor	Calciumcarbonat	CaCO ₃	Kohlensäure
Mauersalpeter	Calciumnitrat	$Ca(NO_3)_2$	Salpetersäure
Natron	Natriumhydrogren-	NaHCO₃	Kohlensäure
	carbonat		
Pottasche	Kaliumcarbonat	K_2CO_3	Kohlensäure
Salmiak	Ammoniumchlorid	NH ₄ CI	Salzsäure
Schwerspat	Bariumsulfat	BaSO ₄	Schwefelsäure
Soda	Natriumsulfat	NaCO ₃	Kohlensäure
- · · · · · · · · · · · · · · · · · · ·			
Trivialnamen von H			
Atznatron,	Natriumhydroxid	NaOH	
Natronlauge		1.011	
Kalilauge	Kaliumhydroxid	KOH	
Barytwasser	Bariumhydroxid	Ba(OH) ₂	
Kalkwasser	Calciumhydroxid	Ca(OH) ₂	

Systematisierung der Salzbildungsarten

I	Metall + Halogen	\rightarrow	Metallhalogen (= Salz)
a)	Natrium + Chlor	\rightarrow	Natriumchlorid
b)	2 Na + Cl ₂	\rightarrow	2 NaCl
II	Metall + Säure	\rightarrow	Salz + Wasserstoff
a)	Natrium + Salzsäure	\rightarrow	Natriumchlorid + Wasserstoff
b)	2 Na + 2 HCl	\rightarrow	2 NaCl + H ₂
III	Base + Säure	\rightarrow	Salz + Wasser
a)	Natriumhydroxid + Salzsäure	\rightarrow	Natriumchlorid + Wasser
-	NaOH + HCI	\rightarrow	NaCl + H₂O

 Al_2O_3

Aluminiumoxid

1. Übung:

Tonerde

Man führt folgende Reaktionen durch:

- a) Zink reagiert mit Salzsäure
- b) Eisen reagiert mit Salzsäure, dabei entsteht u.a. Eisen(III)chlorid
- c) Zink reagiert mit Schwefelsäure

Stelle die Reaktionsgleichungen auf. Welche Salzbildungsart liegt zugrunde?

Kupfersulfat

[Kupfersulfat, CuSO₄ ist in seiner Pentahydratform CuSO₄ · 5 H₂O, welches auch Kupfervitriol bezeichnet wird, das wohl wichtigste technische Kupfersalz. Beim Erwärmen gibt Kupfervitriol über 200°C sein Kristallwasser (in das Kristallgitter eingebautes Wasser) ab und geht in wasserfreies CuSO₄ über. Die industrielle Herstellung erfolgt entweder aus metallischen Vorstoffen (z.B. Zementkupfer, Altkupfer), Entlaugen der Kupferelektrolyse oder aus Kupfererzen, -verbindungen und –rückständen.

Verwendung findet es überwiegend in der Landwirtschaft als in Kalklösung oder Sodalösung gelöstes Fungizid, als Unkrautvertilger und zum Beizen von Saatgut. Es dient als Reagenz in der Erzanalytik, dient in der Galvanotechnik zur Herstellung dicker Kupferüberzüge und zum Verkupfern von Kunststoffen.

Es ist Ausgangssubstanz für eine Vielzahl von Farbstoffen.]

Kupfer reagiert nicht mit verdünnter Salzsäure:

$$Cu + HCl \rightarrow (-)$$

Kupfer reagiert ebenfalls nicht mit hochkonzentrierter Schwefelsäure $Cu + H_2SO_4 \rightarrow (-)$

Kupfer ist chemoresistent und wird als Halbedelmetall bezeichnet.

Schwefelsäure ist stark hygroskopisch, das heißt, dass sie mit allen Wasserteilchen, z.B. in der Luftröhre, reagiert.

Das Oker-Verfahren:

Lösen von Kupfergranulat mit heißer verdünnter Schwefelsäure bei Luftzufuhr:

2 Cu + O₂ + H₂SO₄ + 3 H₂O
$$\rightarrow$$
 2 CuSO₄ · 5 H₂O.

Herstellung von Kupfersulfat

Um Kupfersulfat herzustellen, geht man nicht vom Kupfer aus, sondern vom Kupferoxid. Dabei gelten folgende Reaktionen

- a) $2 \text{ Cu} + \text{O}_2 \rightarrow 2 \text{ CuO}$
- b) $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$
- c) $CuSO_4 + 5 H_2O \rightarrow CuSO_4 \cdot 5 H_2O$

Verwendung von Kupfersulfat:

- zum Verkupfern
- zum Nachweis von Wasser (im Watesmopapier, siehe 8. Klasse)
- in der Landwirtschaft zur Bekämpfung von Pilzen (Fungizid), Krankheitserregern und als Insektizid
- in der chemischen Analytik und zur Herstellung wichtiger farbiger Salze ("Komplexsalze")

Erweiterung: Die Salzbildungsarten

I	Metall + Halogen	\rightarrow	Metallhalogen (= Salz)
	2 Na + F ₂	\rightarrow	NaCl
II			Salz + Wasserstoff
	2 K + 2 HBr	\rightarrow	2 KBr + H ₂
Ш	Base + Säure	→	Salz + Wasser
	Ca(OH) ₂ + 2 HNO ₃		
	33(311)2 1 2 111(3)	,	34(1103)/2 1 2 11/20
IV	Metalloxid + Säure	\rightarrow	Salz + Wasser
	ZnO + 2 HCl	\rightarrow	$ZnCl_2 + H_2O$
V	Salz₁ + Säure₁	\rightarrow	Salz ₂ + Säure ₂
	2 NaCl + H ₂ SO ₄	\rightarrow	Na ₂ SO ₄ + 2 HCl
VI	Salz, + Salz	→	Salz ₃ + Salz ₄
١ ٠٠			AgCI + NaNO ₃
	71g1103 - 11d01		7.1901 - 140140 ₃
VII	Lauge + Nichtmetalloxid	\rightarrow	Salz + Wasser
	Ca(OH) ₂ + CO ₂	\rightarrow	CaCO ₃ + H ₂ O
VIII	Metalloxid + Halogen	\rightarrow	Salz + Sauerstoff
	2 Na ₂ O + 2 F ₂	\rightarrow	4 NaF + O ₂
IX			Salz + Wasser + Sauerstoff
	4 NaOH + 2 Br ₂	\rightarrow	4 NaBr + 2 H ₂ O + O ₂

2. Übung

- Die Herstellung von Kupfersulfat wurde vorgestellt. Welche Salzbildungsart liegt hier vor?
 Erkläre anhand der Gleichung und ordne die Begriffe richtig zu.
- Eisen(III)hydroxid und Schwefelwasserstoff(Säure) reagieren zu Eisen(III)sulfid und Wasser (III. Salzbildungsart). Formuliere die Reaktionsgleichung.
- Bariumchlorid reagiert mit Schwefelsäure.
 Formuliere die Reaktionsgleichung. Welche Salzbildungsart liegt vor?

Schulexperiment:

Man gibt in ein Reagenzglas einige Spatel Natriumchlorid und setzt tropfenweise Schwefelsäure zu.

Beobachtung und Erläuterungen:

Es entsteht ein stechend riechendes Gas.

In den Ausgangsstoffen stecken drei elementare Gase: Wasserstoff, Sauerstoff und Chlor

und drei Gase chemischer Verbindungen:

Wasserdampf, Schwefeldioxid und Salzsäuregas.

Da das entstehende Gas stechend riecht, kann es sich nicht um Wasserstoff, Sauerstoff oder Wasserdampf handeln.

Es kann sich nicht um SO₂ handeln, da die Sulfatgruppe zu stabil ist und unter diesen Bedingungen nicht zerfällt.

Wenn das entstehende Gas Chlor wäre, müsste gleichzeitig Wasserstoff entstanden sein, jedoch trat kein charakteristischer Chlorgeruch auf. Es kann sich bei dem entstandenen Gas also nur um Salzsäuregas handeln. Dieses hätte man auch mit einem Indikatorpapier zeigen können.

Reaktionsgleichung:

Natruimchlorid + Schwefelsäure \rightarrow Natriumsulfat + Salzsäure 2 NaCl + H₂SO₄ \rightarrow Na₂SO₄ + 2 HCl

Eine starke Säure verdrängt eine schwache Säure aus ihrem Salz.

Schwefelsäure ist eine starke Säure, Salzsäure ist eine schwache Säure. Natriumchlorid ist ein Salz der Salzsäure.

Die starke Schwefelsäure verdrängt die schwache Salzsäure aus dem Natriumchlorid.

[Umgekehrt würde eine Reaktion von Salzsäure mit Natrumsulfat, was ein Salz der Schwefelsäure ist, nicht ohne weiteres funktionieren, da die Salzsäure zu schwach ist, um die starke Schwefelsäure aus ihrem Salz zu verdrängen.]

Chlor reizt die Schleimhäute und greift wegen seiner hohen Wasserlöslichkeit die Atemwege an, ist jedoch in geringeren Menge für den Körper unschädlich, wobei das Chlor sofort in Chloridionen umgesetzt würde. Die Chlorierung von Badewasser ist daher ungefährlich. Der typische "Schwimmbadgeruch" ist allerdings nicht auf das Chlor selbst zurückzuführen, sondern durch entstehende hypochlorige Säure. Salzsäuregas ist etwa seit dem XV. Jahrhundert bekannt. Es kommt in geringeren Mengen auch in der Natur vor, löst sich gut in Alkohol und Diethylether ("Äther"), als organische Lösungsmittel. Eine Lösung von Salzsäuregas in Wasser ergibt Chlorwasserstoffsäure, die wir natürlich besser unter dem

Begriff Salzsäure kennen.

3.	Übu	ng:	<u>Salzb</u>	ildung	<u>(1)</u> Verv	ollständige fo	lgende G	leichungen.
1.	Natr	ium	+	Chlor	\rightarrow			
2.	Mg	+	F	\rightarrow				
3.	Al	+	Br	\rightarrow				
4.	Ве	+	I	\rightarrow				
5.	a)	Salzsa	äure	+	Natronlauge	e >		
	b)			+		\rightarrow		
6.	a)	Salpete	rsäure	+		\rightarrow		
	b)			+	Al(OH) ₃	\rightarrow		
7.	a)	Salpete	rsäure	+ }	Kalkwasser	\rightarrow		
	b)			+				
8.	a)			+		\rightarrow		
	b)	H ₂ SO	4	+	KOH	\rightarrow		
9.	a)	Kalzium	hydrox	id + 9	Schwefelsäu	re →		
	b)			+		\rightarrow		
10	.a)	ortho-Pl	nospho	rsäure	+ Kalilauge	\rightarrow		
	b)			+		\rightarrow		
11.	11.a) ortho-Phosphorsäure + Aluminiumhydroxid →							
	b)			+		\rightarrow		
12.	12.a) Magnesiumhydroxid + ortho-Phosphorsäure →							
	b)			+		\rightarrow		
13.	13.a) ortho-Phosphorsäure + Kalziumhydroxid →							
	b)			+		\rightarrow		
14. Welche Salzbildungsarten kommen hier vor? Welche Aufgabennummern sind diesen zuzuordnen?								
	Salz Salz	bildungs bildungs	art: Nr art: Nr	.: .:	(+ (+	<i>→</i>		bennummern: bennummern:

- 4. Übung: Salzbildung (2) Vervollständige folgende Gleichungen.
- 1. Na + F →
- 2. K + HCl →
- 3. Mg + $HNO_3 \rightarrow$
- 4. Al + H₂SO₄→
- 5. Li + $H_2SO_4 \rightarrow$
- 6. Zn + $H_2CO_3 \rightarrow$
- 7. Al + HF \rightarrow
- 8. $H_3PO_4 + Rb \rightarrow$
- 9. Ca + $H_3PO_4 \rightarrow$
- 10. $H_3PO_4 + AI \rightarrow$
- 11. Na₂O + HCl \rightarrow
- 12. $HNO_3 + PbO \rightarrow$
- 13. $Fe_2O_3 + HCI \rightarrow$
- 14. HF + $PbO_2 \rightarrow$
- 15. $K_2O + H_2CO_3 \rightarrow$
- 16. $Al_2O_3 + H_2SO_4 \rightarrow$
- 17. $PbO_2 + H_2SO_4 \rightarrow$
- 18. ZnO + $H_3PO_4 \rightarrow$
- 19. $H_3PO_4 + Fe_2O_3 \rightarrow$
- 20. $PbO_2 + H_3PO_4 \rightarrow$
- 21. NaCl + $H_2SO_4 \rightarrow$
- 22. BaCl₂ + H₂SO₄→
- 23. $H_3PO_4 + FeCl_3 \rightarrow$
- 24. AlBr₃ + HCl \rightarrow
- 25. $Mgl_2 + H_3PO_4 \rightarrow$
- 26. $ZnCl_2 + H_3PO_4 \rightarrow$

Lern maus. de

5. Übung Alkali- und Erdalkalimetalle

	<u>Aufgabenstellung</u>	<u>Lösungsfeld</u>
1.	Trage im Lösungsfeld drei weitere Eigenschaften des Elements Natrium ein.	1. Metall 4 2. Element 5 3. Symbol 6
2.	Gib drei gemeinsame Eigenschaften der Alkalimetalle an	1
3.	Vervollständige folgende Reaktionsgleichungen	Natriumoxid + Wasser → + → Ca + 2 H ₂ O →
		2 Mg + O ₂ →
4.	Gib die chemische Formel an!	 Kaliumhydroxid Calciumhydroxid Bariumoxid
5.	Übertrage die folgende Reaktionsgleichung in Wortform und trage Dein Resultat in das Lösungsfeld ein: 2 Sr + O ₂ → 2 SrO + Q	
6.	Nenne vier Elemente der "Elementfamilie" der Erdalkalimetalle und gebe zwei gemeinsame Eigenschaften an.	1. 2. 3. 4.
7.	Gib die molare Masse von Calcium- hydoxid (mit richtigen Einheiten) an.	
8.	Was versteht man unter einem Mol?	
9.	Wie lautet der Trivialname für Calciumhydroxid?	
10.	Zu welcher Stoffgruppe gehört Kalkwasser und auf welche zwei mgl. Weisen lässt sich das nachweisen?	
11.	Welche Erscheinung kann zum Nachweis der Alkalimetalle herangezogen werden?	
	Eine unbekannte Verbindung enthält die Elemente Ba, O und H. Ein Mol dieser Verbindung entspricht 171g. Welche Formel hat diese Verbindung? (mit Rechnung im Lösungsfeld)	
13.	Auf welche Weise kann man prüfen, ob beim Zusammenbringen eines Metalls oder Metalloxids mit Wasser eine Basenlösung entsteht?	